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The Pathogenesis of Multiple Sclerosis: Old and New Players
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Fig. 1. The Classical Monolithic View of Helper T Cell
Differentiation: Lineages and Master Regulators. Adopted from
O'Shea J, et al.’®

Initial studies arising from in vitro cultured Thelper1 (Th1) and Th2
cells led to the idea that these subsets behaved like lineages, meaning
their phenotype (i.e. selective cytokine production) was inflexible.
Accordingly, these subsets expressed lineage-defining transcription
factors that were sufficient to impart this selective cytokine production.
As newer subsets of cytokine producing cells were identified, they too
were viewed as stable lineages.
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Fig. 2. Model of CD4" T cell initiated central nervous system
(CNS) autoimmunity. Adopted from Simmons SB, et al’

The sequential steps proposed for the pathogenesis of CD4™ T cell
initiated disease are indicated by letters. CD8" T cell initiated
autoimmunity may occur, but is not included in this schematic. (A)
Genetic and environmental factors both promote myelin-specific CD4*
T cell activation and influence the type and efficacy of the
corresponding immunoregulatory response mediated by regulatory
(reg) CD4* and CD8" T cells and B cells. (B) Activated CD4" T cells
enter the CNS and are reactivated by resident antigen-presenting cells
(APCs), triggering production of inflammatory mediators. (C) These
mediators promote (i) localized inflammation of the blood-brain
barrier (BBB) that facilitates recruitment of naive CD4* and CD8" T
cells, B cells, and monocytes to the CNS, and (i) may directly damage
myelin and/or oligodendrocytes. (D) Determinant spreading occurs as
APCs presenting epitopes derived from myelin debris activate newly
recruited T cells with different myelin specificities. (E) Newly activated
CD8" T cells may gain the ability to lyse both (i) APCs presenting
myelin antigen and (ii) oligodendrocytes. Dashed lines indicate
pathways not yet verified with experimental evidence.
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Table 1. Ewdence for Th1/Th17 pathogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Modified from

Gutcher, et al.®

Evidence for Th1 pathogenesis in MS/EME

1 IL-12 demonstrated in plasma, CSF, PBMCs, and plaques of MS patients
Higher percentage of IL-12RB1- and IL-12RB2—expressing T cells in CSF compared with blood of MS patients
1 IL-18 expression in serum, PBMCs, and demyelinating lesions of MS patients

1 Serum levels of IFN-y in RRMS patients prior to onset of relapse

Significant positive correlation between IFN-y—producing PBMCs and MS disability
1 IL-12, IL-2, IFN-y, TNF-q, IL-1B, and IL-6 in PBMCs of patients with acute and relapsing MS
Anti—IL-12p40 Abs reduced CIA severity but not incidence associated with | IFN-y levels

Anti-IL-12p40 Ab suppresses EAE in adoptive transfer recipients

IL-12p40—deficient mice are resistant to MBP-induced EAE

IL-12 treatment increases development of IFN-y—producing CD4+ T cells and thus increases the severity of CIA
Anti-IL-18 Abs significantly | IFN-y production and disease development during MBP-induced EAE in rats
IL-18—deficient mice are resistant to MOG35-55-induced EAE due to decreased IFN-y production

| Incidence and severity of CIA in IL-18—deficient mice

1 CIA severity in mice treated with anti-IL-18 Ab or rhiL-18BP

CNS-infiltrating cells of EAE mice stained for IFN-y and IL-2

CD4+ T cells infiltrating the CNS of acute EAE mice produced the Th1 cytokines IL-2 and IFN-y
T-bet—deficient mice completely failed to generate Th1 cells and thus are resistant to MOG35-55—induced EAE

Evidence for Th17 pathogenesis in MS/EME
IL-12p35-/— mice are susceptible to EAE
IL-23—/— mice are resistant to EAE

IL-12p35-/— mice are susceptible to CIA, while IL-12p40—/— and IL-23p19-/— mice are protected from CIA

IL-18—/— mice are susceptible to EAE

[FN-y—/— mice are hypersusceptible to EAE

IFN-y—/— and IFN-yR—deficient mice are hypersusceptible to CIA
TNF-0—/— mice are not resistant to EAE

IL-4—/— mice are not hypersusceptible to EAE

IL-23 induces a population of encephalitogenic CD4+ T cells called Th17 cells

IL-17 block or deficiency reduces susceptibility to EAE and CIA
IL-1 is necessary for the generation of Th17 cells
IL-18R is necessary for the generation of Th17 cells

IL-17 mRNA is augmented in blood and CSF mononuclear cells of MS patients
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Fig. 3. Proinflammatory and requlatory effects of B cells.
Adopted from Krumbholz M, et al."’

B cells can develop into immunoglobulin-secreting plasma cells,
efficiently present their cognate antigen to T cells, and secrete
inflammatory cytokines that activate T cells and macrophages. B cells
can also secrete cytokines that block T-cell and macrophage activation.
Abbreviations: LT, lymphotoxin; TNF, tumor necrosis factor.
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Fig. 4. Role of innate cells in modulating CNS demyelinating
disease. Adopted from Mayo L, et al.’®

An innate cell in the CNS may recruit peripheral cells and affect the
integrity of the BBB. It can activate CD4+ T cells and induce a
pro-demyelinating effector phenotype (Th1, Th17, or Th9) or a
regulatory T-cell phenotype (Foxp3+ Treg, and Tr1); or terminate the
CD4+ response by inducing apoptosis. The innate cell can also
activate and modulate other adaptive cells such as CD8+ cytotoxic
T cells, B cells, or other innate cells (either peripheral or central). The
innate cell can directly affect the demyelinating and remyelinating
processes by breaking down myelin, clearing (phagocytosis) myelin,
debris, and dead cells, and by affecting oligodendrocyte and neuronal
viability. The innate cell can also affect NG2/OPC (oligodendrocyte
precursor cell) maturation into oligodendrocytes, and their migration
to the lesion site, as well as modulating axonal growth.

Table 2. Evidence for B cell pathogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis

The CNS in multiple sclerosis provides a Bcell-fostering environment that includes B-cell trophic factors such as BAFF (B-cell-activating factor
of the TNF family), APRIL (a proliferation-inducing ligand), and the plasma-cell survival factor CXCL12.

Long-term stability of oligoclonal bands, despite aggressive therapy, indicating persistence of the same B-cell and plasma-cell clones
Intrathecal production of IgG directed against multiple pathogens (such as measles, rubella and varicella zoster virus—the 'MRZ reaction’),
which are presumably not related to MS pathogenesis but indicate a survival niche for various immunoglobulin-secreting cells in the CNS
Memory B cells and plasmablasts are the predominating B-lineage cells in the CSF of patients with MS; their numbers correlate with

disease activity

Follicle-like B-cell aggregates are detected in the meninges in some patients
Cerebrospinal fluid levels of the Bcell-attracting chemokine CXCL13 are linked to CNS inflammation and local IgG production, and have

prognostic value in MS

B-cell depletion is a promising MS therapy, largely unrelated to effects on IgG production

Many immunomodulatory therapies in MS affect the Bcell compartment

Identification and validation of novel autoantibodies in MS is a current research focus; candidate antigens include myelin oligodendrocyte
protein, axoglial targets around the node of Ranvier, and the potassium channel KIR4.1
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Pathological changes

= Inflammation

= New waves of lymphocytes entering the CNS
= Blood-brain barrier disturbance

= New active CNS lesions

= Initial remyelination in active lesions

= Trapped inflammation

= Meningeal inflammatory aggregates

= Slow expansion of pre-existing lesions
= Subpial cortical demyelination

= Diffuse white matter injury

= Brain atrophy

b
RRMS RPMS SPMS PPMS

Age and disease duration

|

Disease mechanisms

= Oxidative injury

= Mitochondrial dysfunction

= Inflammation

= Microglia activation

= Oxidative burst

= Expression of NADPH oxidases
= iNOS expression

= Oxidative injury

= Mitochondrial dysfunction

= Mitochondrial DNA deletions

= [ron accumulation with ageing
(oligodendrocytes, microglia, axons,
neurons and astrocytes)

Fig. 5. Schematic highlighting the evolution of structural pathol-
ogy and disease mechanisms during the course of MS. Adapted
from Lassmann H, et al.”

a. Pathological features associated with conversion of RRMS (pink) to
progressive MS (green). b. Changes in disease mechanisms associated
with conversion of RRMS (pink) to progressive MS (green). The bars
indicate the extent of these differences in relation to increasing age
and disease duration. Although no pathological or mechanistic feature
is exclusively present in either the relapsing—remitting or progressive
stages of MS, major quantitative differences in their occurrence are
evident between these stages. Abbreviations: iNOS, inducible nitric
oxide synthase; MS, multiple sclerosis; PPMS, primary progressive MS;
RPMS, relapsing progressive MS; RRMS, relapsing—remitting MS;
SPMS, secondary progressive MS.
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